Block bootstrap for periodic characteristics of periodically correlated time series

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block bootstrap for periodic characteristics of periodically correlated time series

This research is dedicated to the study of periodic characteristics of periodically correlated time series such as seasonal means, seasonal variances and autocovariance functions. Two bootstrap methods are used: the extension of the usual Moving Block Bootstrap (EMBB) and the Generalized Seasonal Block Bootstrap (GSBB). The first approach is proposed, because the usual MBB does not preserve the...

متن کامل

SHIFT OPERATOR FOR PERIODICALLY CORRELATED PROCESSES

The existence of shift for periodically correlated processes and its boundedness are investigated. Spectral criteria for these non-stationary processes to have such shifts are obtained.

متن کامل

Sieve Bootstrap for Time Series Sieve Bootstrap for Time Series

We study a bootstrap method which is based on the method of sieves. A linear process is approximated by a sequence of autoregressive processes of order p = pn, where pn ! 1 ; p n = on as the sample size n ! 1. F or given data, we t h e n estimate such a n A R pn model and generate a bootstrap sample by resampling from the residuals. This sieve bootstrap enjoys a nice nonparametric property. We ...

متن کامل

Semiparametric Bootstrap Prediction Intervals in time Series

One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...

متن کامل

A generalized block bootstrap for seasonal time series

When time series data contain a periodic/seasonal component, the usual block bootstrap procedures are not directly applicable. We propose a modification of the block bootstrap—the Generalized Seasonal Block Bootstrap (GSBB)—and show its asymptotic consistency without undue restrictions on the relative size of the period and block size. Notably, it is exactly such restrictions that limit the app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonparametric Statistics

سال: 2017

ISSN: 1048-5252,1029-0311

DOI: 10.1080/10485252.2017.1404060